Concrete is one of the most versatile building materials in the world and can produce floor slabs that provide an excellent platform for floor coverings and coatings. Water is an essential component of every concrete mixture. Without it, concrete is not workable and finishable. If water is not used, the cement in the mixture cannot hydrate and gain the required strength. However, once placement, finishing, and curing is complete, remaining moisture in the concrete can adversely affect the installation of flooring materials and the behavior of the slab itself. This webinar will discuss the importance of water in a concrete mixture and review a few concrete problems that water can cause, such as shrinkage, curling, ASR, delamination, dusting, and scaling. In addition, attendees will learn the design and construction considerations that can be used to minimize the potentially adverse effects of moisture in concrete.
This session will explore the differences between bonded and unbonded topping slabs, discuss materials- and installation-related causes of failures, and provide guidelines to properly implement each type of topping slab.
This webinar will discuss the keys to proper surface preparation including establishing the appropriate level of surface profile, evaluating the concrete substrate and the material being installed to determine the correct level of preparation as well as the correct methods and tools to achieve that level.
This unique webinar specifically focuses on the technology, process & application of using high-pressure water to remove concrete, called Hydro Demolition.
Industry experts Eric Muench and Dan Wald will discuss how to best select the right traffic bearing waterproof membrane technology for concrete protection.
Moisture coming from, or through a concrete floor slab, can lead to conditions that are damaging to floor coverings, coatings, the building’s environment, and the ability to store moisture sensitive products directly on a floor slab. In this webinar, attendees will learn where potentially damaging levels of moisture come from, how moisture migrates, and what design measures are an absolute necessity to minimize the risk of moisture-related problems.