The prestressed beams in the Hampton Roads Bridge Tunnel Approach Spans were fabricated in about 1960 (west bound lane) and 1970 (east bound lane). The spans are 50-ft and 75-ft, respectively. The brackish water environment caused corrosion and failure of the bottom strands and deterioration and spalling of the cover concrete in many beams. A project in 2018 strengthened 30 of the more deteriorated beams as an alternative to posting or replacing the bridges. Carbon fiber composite wrap (CFCW) and external post-tensioning (PT) were used to strengthen the beams. Prior to construction, a PT mockup was done with one 50-ft (flexible filler) and one 75-ft (grout) beam to demonstrate that the contractor had the materials, equipment and staff to successfully do the external PT. This presentation describes the project’s mockups and construction and the anticipated increase in strength to be obtained from application of the CFCW and external PT.
In June 2016, ACI published ACI 562-16,” Code Requirements for Assessment, Repair and Rehabilitation of Existing Concrete Structures and Commentary”. ACI 562-16 replaces ACI 562-13 as a standard for the repair of existing concrete structures. Significant changes to ACI 562-16 include improvements in terminology for consistency with ISO, ASCE and other documents, inclusion of requirements for level of repair based upon extent of damage present, and revisions to the interface bond provisions. The video will describe the concrete repair code, focusing on key changes made to the code and describe how the code is to be used on concrete repair projects.
A follow-on presentation to the discussion of our evaluation of over 1500 tire and lube facilities across the United States that prescribed immediate repairs where necessary, reinforcement where deterioration reduced capacity below acceptable levels and coatings necessary to protect structural steel and structural concrete (i.e. our 2019 Philadelphia presentation). This will be an in-depth presentation of how repairs were specified for (3) specific types of structures. The (3) structure types are exposed structural concrete, composite metal deck and fully reinforced form deck slabs all supported by steel structures and reinforced concrete walls. Presentation will include before, during and completion photos of each project discussed. Again, touch on the evaluation processes to include demand to capacity ratios review, evaluation system and inspection form, triggers to determine when shoring is necessary, calculation of capacities per AISC 360, ACI 318, ACI 562 and local building codes.
Dealing with water is always a challenge when constructing a new structure. Whether it is water infiltration that was expected, or water manages to circumvent pre-planned waterproofing methods, it can wreak havoc on the building and interfere with construction schedules. The term “belt and suspenders” is often used in waterproofing and there is a good reason for it. Water chooses the path of least resistance, and many times that path is not discovered until it is too late. There are many methods of water control that can be implemented before, during and after a structure is completed. This presentation will focus on water control methods for new construction that can be implemented during or after the construction process.
Arlington Memorial Bridge is a reinforced concrete spandrel arch bridge that connects Washington, DC and Virginia across the Potomac River. After over 85 years in service, the bridge started exhibiting signs of deterioration, including reinforcement corrosion. As part of a major rehabilitation effort to extend the bridge’s service life, targeted cathodic protection (CP) systems were installed in the arch cross-walls, floors, and under arches to mitigate and prevent corrosion. The implemented CP system consisted of galvanic and two-stage anodes to mitigate corrosion. Galvanic anodes were installed in the repair areas to prevent the ring anode affect and ensure a durable concrete repair. The two-stage anodes were installed in areas of concrete which were actively corroding without signs of concrete deterioration.
This is your opportunity to learn what’s happening with ICRI. 2020 President Mark LeMay will host a recap of the past year, with 2021 President Elena Kessi providing some highlights of what to expect in the near future. We will update you on our newest class of 40 Under 40 recipients and acknowledge our Supporting Members. This is also our opportunity to introduce to you the association’s 2021 Board of Directors and express gratitude to those remarkable volunteers whose technical and administrative committee service ended in 2020.
This presentation looks at buildings that are new or being rehabilitated and the impact on making buildings more energy efficient. Starting with the 2012 IBC, and specifically the 2012 IECC portion of the building code and newer versions, the presentation will look at three aspects of the building envelope: Water Resistance, Air Leakage, and Moisture Transmission. It will then compare to identical buildings, the first built in 2000 and the second constructed in 2020. Illustrations and calculations will show how controlling air leakage can have an enormous impact on the service life of the structure, initial cost of construction, and on-going operations. Lastly, the presentation will look at how incorporating simple additions during the repair/rehabilitation process can have a positive impact on the environment as well as the building owner and the building’s constituents.
Richard Miller Treatment Plant is a 240 mgd cap. potable water treatment facility located in the California area of the Cincinnati, Ohio, US. After installing an advanced ultraviolet (UV) disinfection treatment system in 2013, GCWW became the largest water utility in North America to use UV light following sand filtration and granular activated carbon. The concrete filter gallery building was originally constructed in 1907 with 26 filters, with a 14-filter addition in 1937 and 7 filters added in 1964. After over 110 years of service, the structures started showing significant signs of deterioration, most commonly concrete spalling and reinforcing steel corrosion. This case study will highlight the methods used to evaluate the structures that involved conventional methods such as sounding, crack mapping, chemical and petrographic examinations, along with technology such as Half-Cell Potential/ICOR, Impact-Echo, Ground Penetrating Radar, and UAS (Drone) services.
The case-histories based presentation will focus on the use of nondestructive evaluation (NDE) methods to detect flaws and damage in concrete construction. Case histories will be presented for detection and mapping of flaws and damage in concrete such as cracking, delamination, honeycomb, void, corrosion, fire damage, alkali-silica reaction and low strength concrete. The case histories for the concrete structures are anticipated to include parking structures, bridges, buildings and dams. NDE methods will include sonic/ultrasonic, infrared thermography, radar and corrosion technologies where the results in many cases were confirmed by coring. The use of some of the NDE methods for QA of concrete repairs such as epoxy injection and patching will also be discussed.
The general sentiment around construction and modern technology is that the industry has been slow to embrace it. While this is true of the past, the current and future construction industry is all about modern technology. Not only does technology help to make the industry safer (something that has been a struggle for a very long time), but it is helping contractors to take back control of their budgets, to make smarter choices about project planning and equipment and is, consequently, pushing the green-construction trend forward. The purpose of this presentation is to provide a summary on the current technologies being used in the construction industry with a focus on concrete and to dig even further as to how these can be applied to repair projects. It will provide case studies on how using technology to bring ambient and concrete temperature, relative humidity and strength (among other) data online can help contractors be more efficient.